Welcome to Clip from Spiral logo

Interactive video lesson plan for: Representing Irrational Numbers on a Number line CBSE MathVideos Class 8.mp4

Activity overview:

Subscribe us: http://goo.gl/e3Ar9O
NCERT solutions Google plus page: https://plus.google.com/+Gyanpub/posts
Google Plus: https://plus.google.com/+phanicbse
Euclid’s division algorithm, as the name suggests, has to do with divisibility of
integers. Stated simply, it says any positive integer acan be divided by another positive
integer bin such a way that it leaves a remainder rthat is smaller than b. Many of you
probably recognise this as the usual long division process. Although this result is quite
easy to state and understand, it has many applications related to the divisibility properties
of integers. We touch upon a few of them, and use it mainly to compute the HCF of
two positive integers.

1.2 Euclid’s Division Lemma
Consider the following folk puzzle.
A trader was moving along a road selling eggs. An idler who didn’t have
much work to do, started to get the trader into a wordy duel. This grew into a
fight, he pulled the basket with eggs and dashed it on the floor. The eggs broke.
The trader requested the Panchayat to ask the idler to pay for the broken eggs.
The Panchayat asked the trader how many eggs were broken. He gave the
following response:
If counted in pairs, one will remain;
If counted in threes, two will remain;
If counted in fours, three will remain;
If counted in fives, four will remain;
If counted in sixes, five will remain;
If counted in sevens, nothing will remain;
My basket cannot accomodate more than 150 eggs.


An algorithmis a series of well defined steps
which gives a procedure for solving a type of
problem.


9
An equivalent version of Theorem 1.2 was probably first
recorded as Proposition 14 of Book IX in Euclid’s
Elements, before it came to be known as the Fundamental
Theorem of Arithmetic. However, the first correct proof
was given by Carl Friedrich Gauss in his Disquisitiones
Arithmeticae.
Carl Friedrich Gauss is often referred to as the ‘Prince of
Mathematicians’ and is considered one of the three
greatest mathematicians of all time, along with Archimedes
and Newton. He has made fundamental contributions to
both mathematics and science.

The Fundamental Theorem of Arithmetic says that every composite number
can be factorised as a product of primes. Actually it says more. It says that given
any composite number it can be factorised as a product of prime numbers in a
‘unique’ way, except for the order in which the primes occur. That is, given any
composite number there is one and only one way to write it as a product of primes,
as long as we are not particular about the order in which the primes occur. So, for
example, we regard 2 × 3 × 5 × 7 as the same as 3 × 5 × 7 × 2, or any other
possible order in which these primes are written. This fact is also stated in the
following form:
The prime factorisation of a natural number is unique, except for the order
of its factors.

Tagged under: ncert class 9 solutions,ncert solutions,cbselabs,gyanpub,learncbse,ncert solutions class 9,ncert textbooks,ncert text book solutions,online material real numbers free,free ncert solutions,ncert,cbse,real numbers,common core math

Clip makes it super easy to turn any public video into a formative assessment activity in your classroom.

Add multiple choice quizzes, questions and browse hundreds of approved, video lesson ideas for Clip

Make YouTube one of your teaching aids - Works perfectly with lesson micro-teaching plans

Play this activity

1. Students enter a simple code

2. You play the video

3. The students comment

4. You review and reflect

* Whiteboard required for teacher-paced activities

Share on:

Share Representing Irrational Numbers on a Number line CBSE MathVideos Class 8.mp4 on Google+ Share Representing Irrational Numbers on a Number line CBSE MathVideos Class 8.mp4 on Twitter Share Representing Irrational Numbers on a Number line CBSE MathVideos Class 8.mp4 on Facebook Pin Representing Irrational Numbers on a Number line CBSE MathVideos Class 8.mp4 Email Representing Irrational Numbers on a Number line CBSE MathVideos Class 8.mp4

Ready to see what else Spiral logo can do?

With four apps, each designed around existing classroom activities, Spiral gives you the power to do formative assessment with anything you teach.

Quickfire

Carry out a quickfire formative assessment to see what the whole class is thinking

Discuss

Create interactive presentations to spark creativity in class

Team Up

Student teams can create and share collaborative presentations from linked devices

Clip

Turn any public video into a live chat with questions and quizzes

1000s of teachers use Spiral to deliver awesome, engaging activities that capture students' understanding during lessons.

Now it's your turn Sign up

Spiral Reviews by Teachers and Digital Learning Coaches

Spiral
Review of Spiral by teacher: Kathryn Laster @kklaster

Tried out the canvas response option on @SpiralEducation & it's so awesome! Add text or drawings AND annotate an image! #R10tech

Spiral
Review of Spiral by teacher: Room 220 Math Stars @3rdgradeBCE

Using @SpiralEducation in class for math review. Student approved! Thumbs up! Thanks.

Spiral
Review of Spiral by teacher: Miss Ord @ordmiss

Absolutely amazing collaboration from year 10 today. 100% engagement and constant smiles from all #lovetsla #spiral

Spiral
Review of Spiral by teacher: Adam J. Stryker @strykerstennis

Students show better Interpersonal Writing skills than Speaking via @SpiralEducation Great #data #langchat folks!

Spiral
Review of Spiral by teacher: Dr Ayla Göl @iladylayla

A good tool for supporting active #learning.

Spiral
Review of Spiral by teacher: Brett Erenberg @BrettErenberg

The Team Up app is unlike anything I have ever seen. You left NOTHING out! So impressed!

Get the Clip Chrome Extension & Create Video Lessons in Seconds

Add Clip to Chrome