MIT grad shows how to find antiderivatives, or indefinite integrals, using basic integration rules. More videos with Nancy coming in 2017! To skip ahead: 1) For how to integrate a polynomial with the POWER RULE, skip to 1:35. 2) For how to integrate NEGATIVE POWERS of x, FRACTIONAL POWERS of x, and RADICALS/ROOTS, skip to 6:12. 3) For how to integrate x^(-1), or 1/x, with the LOG RULE, skip to 7:23. 4) For examples where you use more algebra to rewrite before integrating, to SEPARATE the numerator of a FRACTION, or EXPAND a PRODUCT in order to use the Power Rule, skip to 10:00. 5) For basic TRIG and EXPONENTIAL examples that use rules from the Table of Integrals, as well as trig identities, skip to 11:36.

For my video on how to integrate using U-SUBSTITUTION, jump to: https://youtu.be/kTXnhwQKuvU

For my video on how to do INTEGRATION BY PARTS, jump to: https://youtu.be/pqKs3zcqJwU

1) POWER RULE: If you're integrating a polynomial, or just a power of x, you can use the Power Rule on each x-term in the polynomial. The Power Rule says that for a term that's just a power of x, such as x^3, you can integrate by raising the power by 1 AND dividing by that number (the new number you got by increasing the power by 1). For example, the integral of x^3 would be (x^4)/4. If there was a constant multiplied in front of the x-power, you can keep the constant and integrate the rest of the term (Constant Multiple Rule). For example, the integral of 6x^2 would be 6 times (x^3)/3, which simplifies to 2x^3. You can repeat these steps to integrate every term in the polynomial and string them together for the full integral. You can also keep the addition and subtraction between the terms (because of the Sum and Difference Rules). NOTE: The anti-derivative of a constant (just a number) is always that number times x (the Constant Rule), so the integral of 1 is 1*x, or x. At the end, it's very important to remember to add a constant of integration, to include a "+ c" at the end of your answer, when it is an indefinite integral (integral with no limits). ANOTHER NOTE: The Power Rule only works when the power is not -1.

2) NEGATIVE & FRACTIONAL POWERS, and RADICALS: For negative powers, you can still use the Power Rule, as long as the power is not -1. For fractional powers, you can also use the Power Rule. When you increase a fractional power by 1, you will have to simplify the power (before integrating) by getting a common denominator. For roots, like the square root of x, it's best to rewrite the radical as a fractional power, and then use the Power Rule.

3) IF THE X POWER IS -1 in the integrand, either written as x^(-1) or 1/x, you have to use a special rule, the LOG RULE, that you can find on a Table of Integrals. It says that the anti-derivative of x^(-1), or (1/x) is the natural log of the absolute value of x, plus c.

4) MORE ALGEBRA: Sometimes you may need to do a bit more algebra before integrating, so that the integrand is in a form that fits a basic integration rule, like the Power Rule. If you're integrating a rational expression, you can sometimes separate the numerator, or break the fraction into separate fractions, simplify each term, and then integrate with the Power Rule. If you have a product of x expressions, you can multiply it out, or distribute the factors so that you have just a polynomial (and can use the Power Rule).

5) TRIG & EXPONENTIAL: You can find a lot of trigonometric (and exponential) integral rules in the Table of Integrals. If you don't see it in the table, you may need to use a trig identity first, to rewrite the integrand into a form that you can integrate.

Tagged under: integrate,integration,integral,calculus,antiderivative,basic integration,rules,integration rules,power rule,indefinite integral,trig,sin,trigonometric,indentities,radicals,root,exponential,differential,dx,derivative,differentiate,khan,patrickjmt,log rule,natural log,fractional power,rational power,constant rule,constant multiple rule,sum difference,table integrals,formula,polynomial,algebra,-, , ,introduction,intro,function,find,problem

Clip makes it super easy to turn any public video into a formative assessment activity in your classroom.

Add multiple choice quizzes, questions and browse hundreds of approved, video lesson ideas for Clip

Make YouTube one of your teaching aids - Works perfectly with lesson micro-teaching plans

1. Students enter a simple code

2. You play the video

3. The students comment

4. You review and reflect

* Whiteboard required for teacher-paced activities

With four apps, each designed around existing classroom activities, Spiral gives you the power to do formative assessment with anything you teach.

Quickfire

Carry out a quickfire formative assessment to see what the whole class is thinking

Discuss

Create interactive presentations to spark creativity in class

Team Up

Student teams can create and share collaborative presentations from linked devices

Clip

Turn any public video into a live chat with questions and quizzes

Tried out the canvas response option on @SpiralEducation & it's so awesome! Add text or drawings AND annotate an image! #R10tech

Using @SpiralEducation in class for math review. Student approved! Thumbs up! Thanks.

Absolutely amazing collaboration from year 10 today. 100% engagement and constant smiles from all #lovetsla #spiral

Students show better Interpersonal Writing skills than Speaking via @SpiralEducation Great #data #langchat folks!

Dr Ayla Göl
@iladylayla

A good tool for supporting active #learning.

The Team Up app is unlike anything I have ever seen. You left NOTHING out! So impressed!