Welcome to Discuss from Spiral logo

Interactive presentation plan for: Computational thinking

Activity overview:

17 slides

What is computational thinking?

Computers can be used to help us solve problems. However, before a problem can be tackled, the problem itself and the ways in which it could be solved need to be understood.

Computational thinking allows us to do this.


Computational thinking allows us to take a complex problem, understand what the problem is and develop possible solutions. We can then present these solutions in a way that a computer, a human, or both, can understand.

The four cornerstones of computational thinking

Decomposition

The breaking down of a system into smaller parts that are easier to understand, program and maintain.

Pattern Recognition


Finding similarities and patterns in order to solve complex problems more efficiently.

Abstraction


The process of separating and filtering out ideas and specific details that are not needed in order to concentrate on those are are needed.

Algorithms

Developing a step-by-step solution to the problem, or the rules to follow to solve the problem

Each cornerstone is as important as the others. They are like legs on a table - if one leg is missing, the table will probably collapse. Correctly applying all four techniques will help when programming a computer.

Computational thinking in practice

A complex problem is one that, at first glance, we don't know how to solve easily.
Computational thinking involves taking that complex problem and breaking it down into a series of small, more manageable problems (decomposition). Each of these smaller problems can then be looked at individually, considering how similar problems have been solved previously (pattern recognition) and focusing only on the important details, while ignoring irrelevant information (abstraction). Next, simple steps or rules to solve each of the smaller problems can be designed (algorithms).
Finally, these simple steps or rules are used to program a computer to help solve the complex problem in the best way.

Thinking computationally

Thinking computationally is not programming. It is not even thinking like a computer, as computers do not, and cannot, think.

Simply put, programming tells a computer what to do and how to do it. Computational thinking enables you to work out exactly what to tell the computer to do.

For example, if you agree to meet your friends somewhere you have never been before, you would probably plan your route before you step out of your house. You might consider the routes available and which route is ‘best’ - this might be the route that is the shortest, the quickest, or the one which goes past your favourite shop on the way. You'd then follow the step-by-step directions to get there. In this case, the planning part is like computational thinking, and following the directions is like programming.

Being able to turn a complex problem into one we can easily understand is a skill that is extremely useful. In fact, it's a skill you already have and probably use every day.

For example, it might be that you need to decide what to do with your group of friends. If all of you like different things, what would you need to decide?

Did you include any of the following?

What you could do
Where you could go
Who wants to do what
What you have previously done that has been a success in the past
How much money you have and the cost of any of the options
What the weather might be doing
How much time you have

From this information, you and your friends could decide more easily where to go and what to do – in order to keep most of your friends happy. You could also use a computer to help you to collect and analyse the data to devise the best solution to the problem, both now and if it arose again in the future, if you wished.

Another example might occur when playing a videogame. Depending on the game, in order to complete a level you would need to know:
- What items you need to collect, how you can collect them, and how long you have in which to collect them
- Where the exit is and the best route to reach it in the quickest time possible
- What kinds of enemies there are and their weak points

From these details you can work out a strategy for completing the level in the most efficient way.

If you were to create your own computer game, these are exactly the types of questions you would need to think about and answer before you were able to program your game.

Both of the above are examples of where computational thinking has been used to solve a complex problem:
each complex problem was broken down into several small decisions and steps (eg where to go, how to complete the level – decomposition)
only the relevant details were focused on (eg weather, location of exit – abstraction)
knowledge of previous similar problems was used (pattern recognition...
..
.to work out a step by step plan of action (algorithms)

Discuss makes it super easy to make any slideshow into an interactive presentation

Play this activity

* Whiteboard required for teacher-paced activities

Share on:

Share Computational thinking on Google+ Share Computational thinking on Twitter Share Computational thinking on Facebook Pin Computational thinking Email Computational thinking

Ready to see what else Spiral logo can do?

With four apps, each designed around existing classroom activities, Spiral gives you the power to do formative assessment with anything you teach.

Quickfire

Carry out a quickfire formative assessment to see what the whole class is thinking

Discuss

Create interactive presentations to spark creativity in class

Team Up

Student teams can create and share collaborative presentations from linked devices

Clip

Turn any public video into a live chat with questions and quizzes

1000s of teachers use Spiral to deliver awesome, engaging activities that capture students' understanding during lessons.

Now it's your turn Sign up

Spiral Reviews by Teachers and Digital Learning Coaches

Spiral
Review of Spiral by teacher: Kathryn Laster @kklaster

Tried out the canvas response option on @SpiralEducation & it's so awesome! Add text or drawings AND annotate an image! #R10tech

Spiral
Review of Spiral by teacher: Room 220 Math Stars @3rdgradeBCE

Using @SpiralEducation in class for math review. Student approved! Thumbs up! Thanks.

Spiral
Review of Spiral by teacher: Miss Ord @ordmiss

Absolutely amazing collaboration from year 10 today. 100% engagement and constant smiles from all #lovetsla #spiral

Spiral
Review of Spiral by teacher: Adam J. Stryker @strykerstennis

Students show better Interpersonal Writing skills than Speaking via @SpiralEducation Great #data #langchat folks!

Spiral
Review of Spiral by teacher: Dr Ayla Göl @iladylayla

A good tool for supporting active #learning.

Spiral
Review of Spiral by teacher: Brett Erenberg @BrettErenberg

The Team Up app is unlike anything I have ever seen. You left NOTHING out! So impressed!

Get the Clip Chrome Extension & Create Video Lessons in Seconds

Add Clip to Chrome