how-to-find-the-nth-term-of-a-geometric-sequence-algebra-2-honors-common-core-ratio-u9l4

Subscribe Here http://goo.gl/2XXaLS

For more cool math videos visit our site at http://mathgotserved.com or http://youtube.com/mathsgotserved

In mathematics, a geometric series is a series with a constant ratio between successive terms. For example, the series

is geometric, because each successive term can be obtained by multiplying the previous term by 1 / 2.

Geometric series are one of the simplest examples of infinite series with finite sums, although not all of them have this property. Historically, geometric series played an important role in the early development of calculus, and they continue to be central in the study of convergence of series. Geometric series are used throughout mathematics, and they have important applications in physics, engineering, biology, economics, computer science, queueing theory, and finance.

The behavior of the terms depends on the common ratio r:

If r is between −1 and +1, the terms of the series become smaller and smaller, approaching zero in the limit and the series converges to a sum. In the case above, where r is one half, the series has the sum one.

If r is greater than one or less than minus one the terms of the series become larger and larger in magnitude. The sum of the terms also gets larger and larger, and the series has no sum. (The series diverges.)

If r is equal to one, all of the terms of the series are the same. The series diverges.

If r is minus one the terms take two values alternately (e.g. 2, −2, 2, −2, 2,... ). The sum of the terms oscillates between two values (e.g. 2, 0, 2, 0, 2,... ). This is a different type of divergence and again the series has no sum. See for example Grandi's series: 1 − 1 + 1 − 1 + ···.-Wikipedia

Tagged under: Seqser,Finite,Geometric,TU5L18,Series,Infinite,Sequences,series,geometric,arithmetic,common difference,Common ratio,nth term,=a1+(-1),sn=/2(a1+),=a1*^-1,alternating,fibonacci,pattern,pentagonal,sigma,index,convergent,math lesson,infinite series,patterns sequences,sereis examples,convergence,kuta, math, algebra,worksheets,arithmetic ,special series,notation,explicit

Clip makes it super easy to turn any public video into a formative assessment activity in your classroom.

Add multiple choice quizzes, questions and browse hundreds of approved, video lesson ideas for Clip

Make YouTube one of your teaching aids - Works perfectly with lesson micro-teaching plans

1. Students enter a simple code

2. You play the video

3. The students comment

4. You review and reflect

* Whiteboard required for teacher-paced activities

With four apps, each designed around existing classroom activities, Spiral gives you the power to do formative assessment with anything you teach.

Quickfire

Carry out a quickfire formative assessment to see what the whole class is thinking

Discuss

Create interactive presentations to spark creativity in class

Team Up

Student teams can create and share collaborative presentations from linked devices

Clip

Turn any public video into a live chat with questions and quizzes

Tried out the canvas response option on @SpiralEducation & it's so awesome! Add text or drawings AND annotate an image! #R10tech

Using @SpiralEducation in class for math review. Student approved! Thumbs up! Thanks.

Absolutely amazing collaboration from year 10 today. 100% engagement and constant smiles from all #lovetsla #spiral

Students show better Interpersonal Writing skills than Speaking via @SpiralEducation Great #data #langchat folks!

Dr Ayla Göl
@iladylayla

A good tool for supporting active #learning.

The Team Up app is unlike anything I have ever seen. You left NOTHING out! So impressed!