Welcome to Clip from Spiral logo

Interactive video lesson plan for: When is a curve differentiable? (KristaKingMath)

Activity overview:

► My Applications of Derivatives course: https://www.kristakingmath.com/applications-of-derivatives-course

0:00 // What is the definition of differentiability?
0:29 // Is a curve differentiable where it’s discontinuous?
1:31 // Differentiability implies continuity
2:12 // Continuity doesn’t necessarily imply differentiability
4:06 // Differentiability at a particular point or on a particular interval
4:50 // Open and closed intervals for differentiability
5:37 // Summary

When we talk about differentiability, it’s important to know that a function can be differentiable in general, differentiable over a particular interval, or differentiable at a specific point. In order for the function to be differentiable in general, it has to be differentiable at every single point in its domain. If there’s just a single point where the function isn’t differentiable, then we can’t call the entire curve differentiable. In that case, we could only say that the function is differentiable on intervals or at points that don’t include the points of non-differentiability.

So how do we determine if a function is differentiable at any particular point? Well, a function is only differentiable if it’s continuous. So if there’s a discontinuity at a point, the function by definition isn’t differentiable at that point. This applies to point discontinuities, jump discontinuities, and infinite/asymptotic discontinuities.

But there are also points where the function will be continuous, but still not differentiable. Remember, differentiability at a point means the derivative can be found there. If there derivative can’t be found, or if it’s undefined, then the function isn’t differentiable there.

So, for example, if the function has an infinitely steep slope at a particular point, and therefore a vertical tangent line there, then the derivative at that point is undefined. That means we can’t find the derivative, which means the function is not differentiable there. In the same way, we can’t find the derivative of a function at a corner or cusp in the graph, because the slope isn’t defined there, since the slope to the left of the point is different than the slope to the right of the point. Therefore, a function isn’t differentiable at a corner, either.

Therefore, in order for a function to be differentiable, it needs to be continuous, and it also needs to be free of vertical slopes and corners. Barring those problems, a function will be differentiable everywhere in its domain.

Music by: Nicolai Heidlas
Song title: Wings

● ● ● GET EXTRA HELP ● ● ●

If you could use some extra help with your math class, then check out Krista’s website // http://www.kristakingmath.com

● ● ● CONNECT WITH KRISTA ● ● ●

Hi, I’m Krista! I make math courses to keep you from banging your head against the wall. ;)

Math class was always so frustrating for me. I’d go to a class, spend hours on homework, and three days later have an “Ah-ha!” moment about how the problems worked that could have slashed my homework time in half. I’d think, “WHY didn’t my teacher just tell me this in the first place?!”

So I started tutoring to keep other people out of the same aggravating, time-sucking cycle. Since then, I’ve recorded tons of videos and written out cheat-sheet style notes and formula sheets to help every math student—from basic middle school classes to advanced college calculus—figure out what’s going on, understand the important concepts, and pass their classes, once and for all. Interested in getting help? Learn more here: http://www.kristakingmath.com

FACEBOOK // https://www.facebook.com/KristaKingMath/
TWITTER // https://twitter.com/KristaKingMath
INSTAGRAM // https://www.instagram.com/kristakingmath/
PINTEREST // https://www.pinterest.com/KristaKingMath/
GOOGLE+ // https://plus.google.com/+Integralcalc/
QUORA // https://www.quora.com/profile/Krista-King

Tagged under: endpoints differentiable, functions differentiable cusps, asymptotes differentiable, functions differentiable corners, holes differentiable,differentiable,differentiable open interval, check differentiability, function differentiable,educational, differentiable , discontinuities differentiable

Clip makes it super easy to turn any public video into a formative assessment activity in your classroom.

Add multiple choice quizzes, questions and browse hundreds of approved, video lesson ideas for Clip

Make YouTube one of your teaching aids - Works perfectly with lesson micro-teaching plans

Play this activity

1. Students enter a simple code

2. You play the video

3. The students comment

4. You review and reflect

* Whiteboard required for teacher-paced activities

Share on:

Share When is a curve differentiable? (KristaKingMath) on Google+ Share When is a curve differentiable? (KristaKingMath) on Twitter Share When is a curve differentiable? (KristaKingMath) on Facebook Pin When is a curve differentiable? (KristaKingMath) Email When is a curve differentiable? (KristaKingMath)

Ready to see what else Spiral logo can do?

With four apps, each designed around existing classroom activities, Spiral gives you the power to do formative assessment with anything you teach.

Quickfire

Carry out a quickfire formative assessment to see what the whole class is thinking

Discuss

Create interactive presentations to spark creativity in class

Team Up

Student teams can create and share collaborative presentations from linked devices

Clip

Turn any public video into a live chat with questions and quizzes

1000s of teachers use Spiral to deliver awesome, engaging activities that capture students' understanding during lessons.

Now it's your turn Sign up

Spiral Reviews by Teachers and Digital Learning Coaches

Spiral
Review of Spiral by teacher: Kathryn Laster @kklaster

Tried out the canvas response option on @SpiralEducation & it's so awesome! Add text or drawings AND annotate an image! #R10tech

Spiral
Review of Spiral by teacher: Room 220 Math Stars @3rdgradeBCE

Using @SpiralEducation in class for math review. Student approved! Thumbs up! Thanks.

Spiral
Review of Spiral by teacher: Miss Ord @ordmiss

Absolutely amazing collaboration from year 10 today. 100% engagement and constant smiles from all #lovetsla #spiral

Spiral
Review of Spiral by teacher: Adam J. Stryker @strykerstennis

Students show better Interpersonal Writing skills than Speaking via @SpiralEducation Great #data #langchat folks!

Spiral
Review of Spiral by teacher: Dr Ayla Göl @iladylayla

A good tool for supporting active #learning.

Spiral
Review of Spiral by teacher: Brett Erenberg @BrettErenberg

The Team Up app is unlike anything I have ever seen. You left NOTHING out! So impressed!

Get the Clip Chrome Extension & Create Video Lessons in Seconds

Add Clip to Chrome