# Interactive video lesson plan for: Complex Special Triangles 45-45-90 30-60-90 similar triangles Geometry Trig

#### Activity overview:

For more cool math videos visit my site at http://mathgotserved.com or http://youtube.com/mathsgotserved

If you draw an altitude in an equilateral triangle, you will form two congruent 30º- 60º- 90º triangles. Starting with the sides of the equilateral triangle to be 2, the Pythagorean Theorem will allow us to establish pattern relationships between the sides of a 30º- 60º- 90º triangle. These relationships will be stated here as "short cut formulas" that will allow us to quickly arrive at answers regarding side lengths without applying trigonometric functions, or other means.

There are three pattern relationships that we can establish that apply ONLY to a 30º-60º-90º triangle.

A special right triangle is a right triangle with some regular feature that makes calculations on the triangle easier, or for which simple formulas exist. For example, a right triangle may have angles that form simple relationships, such as 45--45--90. This is called an "angle-based" right triangle. A "side-based" right triangle is one in which the lengths of the sides form ratios of whole numbers, such as 3 : 4 : 5, or of other special numbers such as the golden ratio. Knowing the relationships of the angles or ratios of sides of these special right triangles allows one to quickly calculate various lengths in geometric problems without resorting to more advanced methods.

This is a triangle whose three angles are in the ratio 1 : 2 : 3 and respectively measure 30°, 60°, and 90°. The sides are in the ratio 1 : √3 : 2.
The proof of this fact is clear using trigonometry. The geometric proof is:
Draw an equilateral triangle ABC with side length 2 and with point D as the midpoint of segment BC. Draw an altitude line from A to D. Then ABD is a 30--60--90 triangle with hypotenuse of length 2, and base BD of length 1.
The fact that the remaining leg AD has length √3 follows immediately from the Pythagorean theorem.
The 30-60-90 triangle is the only right triangle whose angles are in an arithmetic progression. The proof of this fact is simple and follows on from the fact that if α, α+δ, α+2δ are the angles in the progression then the sum of the angles 3α+3δ = 180°. So one angle must be 60° the other 90° leaving the remaining angle to be 30°.source wiki

Clip makes it super easy to turn any public video into a formative assessment activity in your classroom.

Add multiple choice quizzes, questions and browse hundreds of approved, video lesson ideas for Clip

Make YouTube one of your teaching aids - Works perfectly with lesson micro-teaching plans

Play this activity

1. Students enter a simple code

2. You play the video

3. The students comment

4. You review and reflect

* Whiteboard required for teacher-paced activities

## Ready to see what elsecan do?

With four apps, each designed around existing classroom activities, Spiral gives you the power to do formative assessment with anything you teach.

Quickfire

Carry out a quickfire formative assessment to see what the whole class is thinking

Discuss

Create interactive presentations to spark creativity in class

Team Up

Student teams can create and share collaborative presentations from linked devices

Clip

Turn any public video into a live chat with questions and quizzes

### Spiral Reviews by Teachers and Digital Learning Coaches

@kklaster

Tried out the canvas response option on @SpiralEducation & it's so awesome! Add text or drawings AND annotate an image! #R10tech

Using @SpiralEducation in class for math review. Student approved! Thumbs up! Thanks.

@ordmiss

Absolutely amazing collaboration from year 10 today. 100% engagement and constant smiles from all #lovetsla #spiral

@strykerstennis

Students show better Interpersonal Writing skills than Speaking via @SpiralEducation Great #data #langchat folks!