mod-08-lec-40-the-fundamental-region-in-the-upper-half-plane-for-the-unimodular-group

# Interactive video lesson plan for: Mod-08 Lec-40 The Fundamental Region in the Upper Half-Plane for the Unimodular Group

#### Activity overview:

An Introduction to Riemann Surfaces and Algebraic Curves: Complex 1-Tori and Elliptic Curves by Dr. T.E. Venkata Balaji, Department of Mathematics, IIT Madras. For more details on NPTEL visit http://www.nptel.iitm.ac.in/syllabus/111106044/

Goals of Lecture 40:

* To introduce the notion of a fundamental region for a group-invariant surjective holomorphic map, for example for a holomorphic map that is invariant under the action of a subgroup of holomorphic automorphisms

* To describe a suitable region in the upper half-plane and to show that it is a fundamental region for the unimodular group

Keywords for Lecture 40:

Upper half-plane, quotient by the unimodular group, orbits of the unimodular group, representative of an orbit, invariants for complex tori, complex torus associated to a lattice (or) grid in the plane, doubly-periodic meromorphic function (or) elliptic function associated to a lattice, Weierstrass phe-function associated to a lattice, ordinary differential equation satisfied by the Weierstrass phe-function, automorphic function (or) automorphic form, weight two modular function (or) weight two modular form, full modular function (or) full modular form, period two modular form, congruence-mod-2 normal subgroup of the unimodular group, projective special linear group with mod-2 coefficients, finite group, kernel of a group homomorphism, zeros of the derivative of the Weierstrass phe-function, pole of order two (or) double pole with residue zero, universal cover, neighborhood of infinity, lower half-plane, rational function, kernel of a group homomorphism, functional equations satisfied by the weight two modular form, j-invariant of a complex torus (or) j-invariant of an algebraic elliptic curve, Fundamental theorem of Algebra, complex field is algebraically closed, fundamental region for the full modular form, fundamental region for the unimodular group, ramified (or) branched covering, group-invariant holomorphic maps, fundamental region for a group-invariant holomorphic map, fundamental parallelogram associated to a lattice in the plane, fundamental region associated to the quotient map defining a complex torus

Tagged under: The Fundamental Region Upper Half-Plane Unimodular Group

Clip makes it super easy to turn any public video into a formative assessment activity in your classroom.

Add multiple choice quizzes, questions and browse hundreds of approved, video lesson ideas for Clip

Make YouTube one of your teaching aids - Works perfectly with lesson micro-teaching plans

Play this activity

1. Students enter a simple code

2. You play the video

3. The students comment

4. You review and reflect

* Whiteboard required for teacher-paced activities

## Ready to see what elsecan do?

With four apps, each designed around existing classroom activities, Spiral gives you the power to do formative assessment with anything you teach.

Quickfire

Carry out a quickfire formative assessment to see what the whole class is thinking

Discuss

Create interactive presentations to spark creativity in class

Team Up

Student teams can create and share collaborative presentations from linked devices

Clip

Turn any public video into a live chat with questions and quizzes

### Spiral Reviews by Teachers and Digital Learning Coaches

@kklaster

Tried out the canvas response option on @SpiralEducation & it's so awesome! Add text or drawings AND annotate an image! #R10tech

Using @SpiralEducation in class for math review. Student approved! Thumbs up! Thanks.

@ordmiss

Absolutely amazing collaboration from year 10 today. 100% engagement and constant smiles from all #lovetsla #spiral

@strykerstennis

Students show better Interpersonal Writing skills than Speaking via @SpiralEducation Great #data #langchat folks!